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Figure 3. Time-of-flight distributions between TOF0 and TOF1 for data and Monte Carlo simulation: 6p
mm · rad positive muon beams with nominal beam momentum pµ = 140 MeV/c (a) and pµ = 200 MeV/c
(b). The position of the electron peak in the raw data has been renormalised to its nominal value. Momentum
distribution for beam particles at TOF0 (c) and TOF1 (d) for a simulated positive 6p mm · rad at 200 MeV/c
(a cut between 26.2 and 33 ns on the time–of–flight between TOF0 and TOF1 is applied).

Table 4. Summary of paired beam settings for the three time-of-flight intervals (also called Points).

TOF interval, ns muon runs with pion runs with
PD2 (MeV/c) no. of events (103) PD2 (MeV/c) no. of events (103)

Point 1 27.4 – 27.9 294 354 362 448
Point 2 28.0 – 28.6 258 235 320 265
Point 3 28.9 – 29.6 222 195 280 167

the calibration runs. Pairs of calibration runs for which muons and pions have time-of-flight values
within the same range (see table 4) are defined for each point and are used to benchmark the KL
response to muons or pions of a given time-of-flight.

As an example, figure 6 shows the time-of-flight distributions in two paired beam settings. The
interval between 28.0–28.6 ns in the TOF0–TOF1 time-of-flight is populated mainly by muons for
one beam setting and by pions for the other.
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Figure 3. Time-of-flight distributions between TOF0 and TOF1 for data and Monte Carlo simulation: 6p
mm · rad positive muon beams with nominal beam momentum pµ = 140 MeV/c (a) and pµ = 200 MeV/c
(b). The position of the electron peak in the raw data has been renormalised to its nominal value. Momentum
distribution for beam particles at TOF0 (c) and TOF1 (d) for a simulated positive 6p mm · rad at 200 MeV/c
(a cut between 26.2 and 33 ns on the time–of–flight between TOF0 and TOF1 is applied).

Table 4. Summary of paired beam settings for the three time-of-flight intervals (also called Points).

TOF interval, ns muon runs with pion runs with
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Point 1 27.4 – 27.9 294 354 362 448
Point 2 28.0 – 28.6 258 235 320 265
Point 3 28.9 – 29.6 222 195 280 167

the calibration runs. Pairs of calibration runs for which muons and pions have time-of-flight values
within the same range (see table 4) are defined for each point and are used to benchmark the KL
response to muons or pions of a given time-of-flight.

As an example, figure 6 shows the time-of-flight distributions in two paired beam settings. The
interval between 28.0–28.6 ns in the TOF0–TOF1 time-of-flight is populated mainly by muons for
one beam setting and by pions for the other.
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•  The MICE Beamline was designed to provide a 
>99% pure muon beam 

•  Approach: momentum-select ≈ 400 MeV/c pions, 
then momentum-select ≈ 200 MeV/c (backwards) 
decay muons  

•  The actual pion contamination has yet to be 
determined 
➤ Hard to measure, since so small 
➤ Analysis [1] using time-of-flight counters and KL 

calorimeter has set ≈ 1% upper limit 
•  We show how the MICE Cherenkov (Ckov) 

detectors can be used to search for pion 
contamination in the MICE beam 
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•  “400 MeV/c spike” π and µ should count in 
CkovA, while 200 MeV/c muons should not: 

 

Figure: Histograms of Step I data (left) with and without CkovA cut 
and (right-top) with  > 2 p.e. detected in CkovA and (right-bottom) 
additional  > 10 p.e. cut in CkovB 

•  Peak at ≈ 27.5 ns: 539 ± 34 events 
! Consistent with ≈ 400 MeV/c MC “spike” π and their 

decay µ! 

•  Concept: MICE Step I [2] had time-of-flight counters, 
Ckovs, and calorimeters, but no magnetic spectrometers, 
⇒ particle velocity known, but not momentum 

!  Makes event-by-event Ckov particle ID challenging 

"  So look for event distribution consistent with pions 

•  MICE Beamline [3]: 

 

MICE beam ≈ well approximated in G4beamline: 

 

 

Figure: G4beamline/data comparison vs time of flight from ToF0 to 
ToF1 and G4beamline p distributions [1] 

•  So G4beamline predicts a broad momentum 
spectrum of pions, as well as a ≈ 400 MeV/c pion 
spike, “sneaking through” D2, and its decay 
muons 
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•  Limit calculation for pion fraction R: 

•  If all fast particles were π,  
R = 539 / 0.538 / 118,793 = (0.84 ± 0.05 ± 0.09)%,  

or < 0.97% @ 90% CL 

! Similar to ToF/KL analysis result 

•  If (G4BL) 1/20 of fast particles at ToF1 are π,  

R = 0.04% (indeed small) 

G4BL G4BL/data comparison 

e 

 
 

Data @ 
237 MeV/c 

Shoulder  appears for CkovA #p.e. >2 

Figure 7: Time-of-flight spectra with pea> 2 and peb> 10 cuts, greatly reducing the delta-ray
contribution.

If we assume all fast ⇡-µ are pions, we can obtain upper limits on the pion fraction: R

µ⇡

<

0.97% (90% CL) and R

µ⇡

< 1.00% (95% CL). Any Bayesian model would require some prior
knowledge of the pion-to-muon ratio in the beam. Estimating this (based on the G4beamline
simulation) to be about 1/20 (or about 50 pions) allows us to estimate the fraction of pions in the
beam to be ⇡/µ ' 50/119, 000 = 0.04%.

4 E�ciency Correction

For the e�ciency correction we use the p

D2 = 294 MeV/c data set. The muons in this data set
span the Ckov-b and Ckov-a muon thresholds well at 212 MeV/c and 272 MeV/c respectively (see
Figure 4(bottom)). We assume the corresponding pion e�ciency behaves in a similar manner.
This assumption will be checked with ⇡-µ-e calibration data (Section 5). The e�ciency curves for
Ckov-a(b), ✏

a(b)(�t)
i

in each tof bin are determined by taking the ratio of the number of events n
i

satisfying the pea(b)> x cut in the ith tof bin to the total number of events N
i

in that tof bin with
no Ckov cut applied:

✏

a(b)(�t)
i

= n

i

(pea > x)/N
i

x = 2(10) pe . (6)

The e�ciency curves are displayed in Figure 8. Below 26.5 ns and above 28.0 ns, where data are
sparse, asymptotic averages were used.

5 Systematic Errors

The systematic errors on the measurement are dominated by the e�ciency correction 1/✏
a

✏

b

for
Ckov-a and Ckov-b, and also the signal fit. The e�ciency corrections were compared with e�ciency
corrections from ⇡-µ-e calibration data where muons and pions can be identified via time-of-flight.
The average e�ciency shift between the ⇡-µ-e calibration data and the p

D2 = 294 MeV/c muon

7

Figure 5: Time-of-flight spectrum from standard (p
D2 = 237 MeV/c) muon runs. The electron

time-of-flight peaks just below 26 ns.

Figure 6: Time-of-flight spectrum with pea> 2 cut (solid) with shape of muon spectrum superim-
posed(dashed). Fast ⇡-µ are identified as the satellite peak centered at 27.6 ns. A cut on peb> 8
(dot-dash) further reduces the delta-ray background.

6

•  Efficiency correction: 

Figure: Efficiency curves vs ToF (in ns) for (top) CkovA and 
(bottom) CkovB 
 
! Eff. = 53.8% (averaged over event ToF distribution) 

Figure 8: E�ciency curves ✏
a(b) vs tof (in ns), in Ckov-b with pea> 10 (solid) and Ckov-a, peb> 2

(dashed).

data sets gave systematic error shifts of ±0.7% and ±3.4% (a,b) on the n = 1002 fitted ⇡-µ
events, or ±7 and ±34 events respectively. Taken in quadrature we obtain a ±35 event systematic
on the e�ciency correction. For the fit correction we varied the signal and background fits and
determined ±95 event count error in Equation 5 corresponding to 0.08% absolute error. When
taken in quadrature we obtain a ±101 event systematic error on the ⇡-µ signal.

Table 1: Systematic error estimates on the number of fitted ⇡-µ events.

Systematic error % error # events Source
E�ciency correction Ckov-a 0.7% 7 comparison to muon calibration runs
E�ciency correction Ckov-b 3.4% 34 comparison to muon calibration runs
Fitting model 9.4% 95 variation of fit parameters

6 Conclusion

We have used the Ckov-a,-b counters to measure the fast-⇡-or-µ fraction in Step I data. Under
the assumption that fast ⇡-µ’s dominate the pion background (Figure 3), we measure the fast ⇡-µ
ratio to be R

µ⇡

< 0.97% (90% CL) and R

µ⇡

< 1.00% (95% CL). Under the further assumption
from MC studies that only 5% of the pions in the fast ⇡-µ beam reach the TOF1 trigger, then the
pion contamination level is ⇡ 0.04%, indeed very small.
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Data @ 
294 MeV/c 

CkovA #p.e. >2 
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